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1 Introduction

1.1 Scientific Theory
The ancients created myths populated with fantastic entities, extraordinarly persons,
and gods. These memorable stories created a language for describing why things are
as they are, and they guided expectation. This is what theories do, too. They create
an idiom for discussion, (the normative or prescriptive aspect of theory,) and prompt
more or less useful expectation, (the positive, descriptive or predictive aspect of the-
ory.) Some theory, like music theory, is almost purely normative. Mathematical
theories, like group theory, set theory, and graph theory, are purely normative. New-
ton’s second law was partly normative in that it created a way to quanitfy force in
terms of existing metrics for time, distance and mass. Most scientific theory is both
normative and positive. The myths of today include scientific theories. Scientific
theories are stories that model reality in our thought, but they are not the reality
itself.

1.2 Scientific Standards
Scientific theory is supposed to meet certain requirements: logical self-consistency,
usefulness, testability. How do these criteria apply to normative and positive parts
of a theory?

Intelligibility and logical self-consistency are required of the normative part of a
theory. These are supported by a principle, Ockham’s razor, associated with William
of Ockham (c. 1287–1347), “Entities must not be multiplied beyond necessity,” mean-
ing the number of entities created or assumptions made is best kept to a minimum.
Humorously stated, a theory should be as simple as possible but no simpler.

Testability, sometimes called falsifiability, pertains to the positive part of theory
as clarified by Karl Popper (1902 – 1994), eminent philosopher of science.

1. It is easy to obtain confirmations, or verifications, for nearly every
theory — if we look for confirmations.

2. Confirmations should count only if they are the result of risky pre-
dictions; that is to say, if, unenlightened by the theory in question,
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we should have expected an event which was incompatible with the
theory — an event which would have refuted the theory.

3. Every "good" scientific theory is a prohibition: it forbids certain
things to happen. The more a theory forbids, the better it is.

4. A theory which is not refutable by any conceivable event is non-
scientific. Irrefutability is not a virtue of a theory (as people often
think) but a vice.

5. Every genuine test of a theory is an attempt to falsify it, or to refute
it. Testability is falsifiability; but there are degrees of testability:
some theories are more testable, more exposed to refutation, than
others; they take, as it were, greater risks.

6. Confirming evidence should not count except when it is the result of
a genuine test of the theory; and this means that it can be presented
as a serious but unsuccessful attempt to falsify the theory. (I now
speak in such cases of "corroborating evidence.")

7. Some genuinely testable theories, when found to be false, are still
upheld by their admirers — for example by introducing ad hoc some
auxiliary assumption, or by reinterpreting the theory ad hoc in such
a way that it escapes refutation. Such a procedure is always pos-
sible, but it rescues the theory from refutation only at the price
of destroying, or at least lowering, its scientific status. (I later de-
scribed such a rescuing operation as a "conventionalist twist" or a
"conventionalist stratagem.")

One can sum up all this by saying that the criterion of the scientific status
of a theory is its falsifiability, or refutability, or testability.1

Of course, no one considers refuting music theory.
The “conventionalist strategem” to handle falsification is a not uncommon stop-

gap when a satisfactory replacement theory has not yet been crafted.
Usefulness is realized from the conjunction of normative and positive parts. The

normative aspect of a relativity theory must provide a consistent metrical framework
for description, (positive part,) of events in the physical world, in particular, of
the time and place of any event. It must provide a foundation for precise, lucid

1 Karl Popper, Conjectures and Refutations, London: Routledge and Keagan Paul, 1963, pp.
33-39; from Theodore Schick, ed., Readings in the Philosophy of Science, Mountain View, CA:
Mayfield Publishing Company, 2000, pp. 9-13.
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description of physical phenomena and of the physical laws and theories we construct
to explain them. Its applicability must extend to any frame of reference.

Alternative theories may co-exist. A relativity theory must be judged first on
whether it is self-consistent, then on whether its positive elements have withstood
all tests, only then on usefulness or ease of use. A novel theory of relativity has an
extra burden inasmuch as novelty compromises ease of use.

1.3 Scientific Revolution
What happens when a theory is falsified? This question was brilliantly answered
by Thomas Kuhn in his book The Structure of Scientific Revolutions. The surpris-
ing answer, (with only slight hyperbole,) is, “nothing.” Kuhn’s study of historical
cases reveals that normal science tends to be tightly focused on working within the
prevailing paradigm. Evidence that a theory is false tends to be ignored, dismissed
as flawed, dismissed as paradoxical, rationalized with a conventionalist twist and so
forth. Most efforts are aimed at confirming the prevailing theory, evaluating parame-
ters of the theory, and finding new applications of the theory. When a revolutionary
new theory replaces an old theory it is largely the dying off of the old guard as a
younger generation embraces the new theory. Perhaps, having a replacement theory
ready to go when the old theory is discredited would facilitate a break from that
unfortunate pattern.

Special relativity theory has vulnerabilities. One, a corollary of special relativity,
that one way speed of light is the same in every direction for every inertial frame,
can be experimentally tested.2

FitzGerald relativity is herein proposed to be the successor to Einstein’s special
theory of relativity if the one way speed of light is found to be the same in every
direction only for a unique rest frame of reference. Another alternative theory, fea-
turing an absolute frame of reference, might be based on the work of Lorentz and
Larmor.

1.4 Introduction to FitzGerald Relativity
It is well known that Heinrich Anton Lorentz acknowledged the priority of George
Francis FitzGerald in suggesting the Michelson Morley experiment of 1887 might be
explained by contraction of material bodies due to their velocity relative to the lu-
miniferous ether. The transformation equations of Albert Einstein’s special relativity

2Wallace, D. B., "A Revealing Test of the Compatibility of Special Relativity Postulates"
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(1905) are in consequence sometimes called the Lorentz-FitzGerald transformations.
Yet, these three held different concepts.

FitzGerald conjectured in 1889:

. . . that almost the only hypothesis that can reconcile this . . . is that the
length of material bodies changes, according as they are moving through
the ether or across it, by an amount depending on the square of the ratio
of their velocity to that of light. We know that electric forces are affected
by the motion of the electrified bodies relative to the ether, and it seems
a not improbable supposition that the molecular forces are affected by
the motion, and that the size of a body alters consequently.3

This remarkable conjecture anticipated recognition that chemical bonds are electro-
magnetic in nature and suggested that length contraction consequently occurs across
as well as along the direction of motion. It thus uniquely offers a physical explanation
of Michelson’s and Morley’s null result.

The electromagnetic field is not a material substance, but the phenomena it
models are evident. According to Maxwell’s theory of electromagnetism, disturbances
in the electromagnetic field are propagated isotropically at a constant speed c in
free space. The field, not some ethereal substance, is the conceived medium of
this propagation. Speculation about a dragged or deformed luminiferous ether was
triggered by the surprising outcome of the Michelson Morley experiment. Michelson
expected that the round trip of light between two points on a stone slab of presumed
stable dimensions, would take longer if the stone slab were moving relative to the
ether, by the factor 1/(1−v2/c2) if the points were aligned parallel to their velocity−→v ,
and by 1/

√
1− v2/c2 if aligned perpendicular to the velocity. However, he observed

no discernable difference.
The purport of FitzGerald’s conjecture was that the two points were not a fixed

distance apart as Michelson had supposed; rather, that the forces holding a material
body together were electromagnetic, (a novel idea in itself,) and governed the mate-
rial dimensions of the stone slab causing contraction by the factor 1 − v2/c2 along
the direction of motion and by

√
1− v2/c2 perpendicular to it; thus cancelling the

expected change in round trip time.
In their attempts to account for the Michelson Morley null result, both Lorentz

and FitzGerald related the length contraction of their conjectures to velocity relative
to an absolute frame of reference, the luminiferous ether, characterized by isotropy

3FitzGerald, G. F., “The Ether and the Earth’s Atmosphere,” Science v. XIII No. 328, p. 390,
1889
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of one way light speed. Lorentz, unlike Einstein, was not committed to zero trans-
verse contraction, but noted that any deformation related to velocity must have a
longitudinal to transverse ratio of

√
1− v2/c2.

Einstein rejected the notion of a luminiferous ether. He declared “absolute rest”
meaningless and considered velocity to be strictly relative. Einstein, by his own
testimony, was unfamiliar with the Michelson Morley experiment when he wrote his
special relativity paper. He envisioned trying to measure the speed of light using
clocks, though clocks of that day were nowhere near stable and accurate enough for
the purpose. His special relativity was a speculation without supporting experimental
evidence.

FitzGerald died in 1901, prior to the advent of special relativity. He did not
include equations in his brief conjecture. From his words, however, a different set
of transformation equations is easily constructed. From these FitzGerald equations
an entirely new theory of relativity unfolds, no less empirically successful, more
intuitive, free of ambiguities and paradoxes and incorporating the notion of absolute
rest. Detailed description of this FitzGerald relativity is the subject of this series.

2 FitzGerald Coordinate Transformations

2.1 Events and Space-Time Coordinates
In keeping with the instincts of FitzGerald and Lorentz, only one inertial frame of
reference, called the rest frame, will be deemed absolutely stationary so that light
speed is isotropic, i. e. the same in every direction. Throughout this paper, reference
will be made to local frames of reference, each being fully specified by its origin and
its constant velocity relative to the rest frame. The absolute velocity of a local frame
will usually be given as the ratio of its velocity to the speed of light, −→β = −→v

c
. Local

frames differing in choice of origin are yet the same inertial frame if the coordinate
origins have the same velocity relative to the rest frame. Thus a semantic distinction
is made between inertial frame and coordinate frame.

Time is understood to be one thing, not a different thing in each frame of ref-
erence. All clocks are to be synchronized in the rest frame. The use of local time
synchronization, based on the assumption that light signals between the local ori-
gin and the clock take the same time in each direction, is deprecated as a fiction
in all but the rest frame where it is strictly true; however, the likelihood that the
practice will continue compels inclusion of a transformation between local time and
rest frame time. Current international time standards are synchronized in the earth
center inertial frame because earth rotation puts clocks around the world in different
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inertial frames; they could as well use the rest frame rather than the earth center
frame.

Discussions of light and time will be idealized with light speed always c relative to
the rest frame, and clock rate the same for all clocks regardless of motion or position.

As a point has three spatial coordinates, (x, y, z), an event has four coordinates,
(x, y, z, t), three of space and one of time. The spatial coordinate values are frame
of reference specific because spatial coordinates will be in local length units. The
coordinates of an event E are either given as absolute (E0 relative to the rest frame,)
or local (Eβ local length with rest frame time,) but may for special purposes be either
fully local including local time (Eβ,local) or rest frame metrics relative to a local origin
(Eβ,0 subscript order being "frame-of-reference, metric.")

2.2 Required Alignment of Coordinates
Lorentz equations of special relativity and FitzGerald equations both transform
space-time coordinates of an event relative to one inertial coordinate system into
the space-time coordinates of the same event relative to another. Both are devel-
oped to apply when the x-axes of the two systems coincide and the other axes are
parallel, respectively. This constraint is removed in section 2.6. Only the FitzGerald
equations also require that one frame be the rest frame and that the other frame
use rest frame time rather than local time. “Rest frame” is deemed meaningless
in special relativity. Both Lorentz and FitzGerald equations require the origins to
coincide at time zero; this puts a constraint on origin choice for Lorentz equations,4
but not for FitzGerald equations unless the deprecated local time is involved.

In special relativity, the velocity variable of the Lorentz equations is the velocity
of one inertial frame relative to another. The length contraction and time dilation
are held to be virtual and frame of reference dependent. The same equations serve as
the inverse transformation. Thus special relativity denies the uniqueness of the rest
frame. The normative definitions included in special relativity preclude identification
of an absolute rest frame.

The velocity variable v0 of the FitzGerald equations is velocity in the positive
x-direction relative to absolute rest; in FitzGerald relativity it is possible to deduce
absolute velocity from empirical tests, (to be addressed in part three.) Length con-
traction is understood to be actual contraction of condensed matter. The contraction
of moving solid length standards produces a virtual lengthening of spatial distance
as compared to rest frame measure. All frames share rest frame time so there is no

4When local time is used, the local origin must be a point where local time coincides with rest
frame time.

7



time dilation.5 The reverse transformation is distinct from the forward transforma-
tion.6 The frame of reference of a variable will be indicated by a subscript, usually
the frame’s velocity as a fraction of light speed, e. g. φβ, with a subscript zero for
the absolute rest frame, e. g. φ0.

2.3 Equation Summary
The name of a vector will represent the magnitude of the vector unless clearly shown
as a vector, e. g. −→β .

Here for comparison are the equations.
Lorentz Equations FitzGerald Equations

β ≡ v
c

β ≡ v0
c

γ ≡ 1√
1−β2

γ ≡ 1√
1−β2

Forward Reverse

tB = γ
(
tA − vxA

c2

)
t = t t = t

xB = γ(xA − vtA) xβ = γ2(x0 − βct) (22) x0 = xβ
γ2 + βct (25)

yB = yA yβ = γy0 (23) y0 = yβ
γ

(26)

zB = zA zβ = γz0 (24) z0 = zβ
γ

(27)

Local time: tβ = γ2
(
t0 − βx0

c

)
(29) t0 = tβ + βxβ

c
(30)

Good to know: γ2β2 = γ2 − 1 0 ≤ β < 1 ≤ γ

Trig Functions tanφβ = tanφ0
γ

(31) tanφ0 = γ tanφβ (32)

of Angle sinφβ = sinφ0

γ
√

1−β2 sin2 φ0
(33) sinφ0 = sinφβ√

1−β2+β2 sin2 φβ
(34)

from −→β cosφβ = cosφ0√
1−β2+β2 cos2 φ0

(35) cosφ0 = cosφβ
γ
√

1−β2 cos2 φβ
(36)

The alert reader will have noticed that, for local time and for spatial coordinates,
the right sides of the Lorentz equations, if multiplied by γ, yield the right sides of
the forward FitzGerald equations, and for all but the x coordinate, if divided by γ,

5Clock rate changes are not conflated with time rate changes.
6Rest frame is considered un-transformed, so “forward” is from rest frame to moving frame, and

“reverse” restores rest frame.
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yield the right sides of the reverse FitzGerald equations. The use of rest frame time
rather than local time is responsible for the x coordinate exception.

2.4 Transformation Matrices
Transformation of position vectors can be effected with matrix operators.

p0F− γ2q = pβ (1)

pβG + q = p0 (2)
where

p0 =
[
x0 y0 z0

]
(3)

q =
[
βct 0 0

]
(4)

pβ =
[
xβ yβ zβ

]
(5)

F =


γ2 0 0

0 γ 0

0 0 γ

 (6)

G =


1
γ2 0 0

0 1
γ

0

0 0 1
γ

 (7)

Fp0 − γ2q = pβ (8)
Gpβ + q = p0 (9)

where

p0 =


x0

y0

z0

 (10)
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q =


βct

0

0

 (11)

pβ =


xβ

yβ

zβ

 (12)

F =


γ2 0 0

0 γ 0

0 0 γ

 (13)

G =


1
γ2 0 0

0 1
γ

0

0 0 1
γ

 (14)

2.5 Equation Derivations
2.5.1 A Round Trip of Light

To begin our derivation of the relation of frame dependent quantities, see figure 1,
representing the round trip of a light signal from point P to Q and back, as P and
Q move at constant velocity v0 = βc relative to the rest frame. Although P and Q
are moving in the rest frame, they are fixed relative to each other.

We take A and P as the origins of stationary and moving frames, respectively,
coinciding at t = 0. We let the x-axis be parallel to the velocity. We let the z-
coordinate go unexpressed as it is zero throughout.

The rest frame time scale is used everywhere, as if clocks have been synchronized
using light or radio signals understood to have velocity c relative to the rest frame.

The light signal, to begin its round trip, originates from P when P is at point
A, our space-time origin. The light signal reaches Q at time t = T1 when Q and P
are at points B and D respectively. The signal, being reflected at B, returns to P
at t = T1 + T2 when P is at point C. The points A, B, C, and D are fixed points in
the rest frame marking the locations of these events. Light path lengths are: from
A to B, cT1, and from B to C, cT2.

10



The rest frame measure of angle 6 CDB between the velocity −→v0 = −→β c and the
direction P to Q is φ0. The rest frame distance between points P and Q, (same as
the distance between D and B,) is d0. Path lengths for the moving point P are from
A to D, βcT1, and from D to C, βcT2. All times, distances and angles are relative
to the rest frame.

We explore the relatonship of these quantities in pursuing our ultimate purpose
to derive the moving frame distance dβ.

Figure 1
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The cosine law and quadratic formula yield solutions in variables d0, βc, and φ0
for T1 and T2 in the triangles 4ADB and 4CDB respectively. First, we find T1 of
triangle 4ADB in equations (15) through (17) using the law of cosines.

c2T 2
1 = β2c2T 2

1 + d2
0 + 2βcT1d0 cosφ0 (15)

We write (15) in standard quadratic form.

(1− β2)c2T 2
1 − 2βcd0 cosφ0T1 − d2

0 = 0 (16)

We solve for T1 using the quadratic formula.

T1 =
d0

(
β cosφ0 +

√
1− β2 sin2 φ0

)
c(1− β2) (17)

Now, we find T2 of triangle 4CDB in equations (18) through (20).

c2T 2
2 = β2c2T 2

2 + d2
0 − 2βcT2d0 cosφ0 (18)
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We write (18) in standard quadratic form.

(1− β2)c2T 2
2 + 2βcd0 cosφ0T2 − d2

0 = 0 (19)

We solve for T2 using the quadratic formula.

T2 =
d0

(
−β cosφ0 +

√
1− β2 sin2 φ0

)
c(1− β2) (20)

2.5.2 Moving Length

In the proper frame of P and Q, the distance from P to Q is judged by the round
trip time of the light signal, dβ = c(T1+T2)

2 .

dβ = c

2

d0

(
β cosφ0 +

√
1− β2 sin2 φ0

)
c(1− β2) +

d0

(
−β cosφ0 +

√
1− β2 sin2 φ0

)
c(1− β2)


which simplifies to

dβ = γ2d0

√
1− β2 sin2 φ0 (21)

The spatial distance appears greater in the moving frame because the local mea-
suring sticks are contracted.

2.5.3 Spatial Coordinate Conversion

The rest frame coordinates of Q are (βct+ d0 cosφ0, d0 sinφ0). For length parallel to
the velocity, the special case φ0 = 0, our moving length equation yields the forward
transformation of the x-coordinate.

xβ = γ2(x0 − βct) (22)

Take note that when transforming the difference of x-coordinates at a fixed time, the
βct terms cancel, so ∆xβ = γ2∆x0.

For the perpendicular case, φ0 = π
2 , we have our forward transformation of the

y-coordinate.
yβ = γy0 (23)

By symmetry, the forward transformation of the z-coordinate is

zβ = γz0 (24)

12



Now we can solve the equations (22) through (24) to find the reverse transforma-
tions.

x0 = xβ
γ2 + βct (25)

y0 = yβ
γ

(26)

z0 = zβ
γ

(27)

2.5.4 Reverse Length Conversion

d0 =
√
x2

0 + y2
0 + z2

0

=

√√√√x2
β

γ4 +
y2
β + z2

β

γ2

=

√√√√d2
β cos2 φβ

γ4 +
d2
β sin2 φβ

γ2

= dβ
γ

√
(1− β2) cos2 φβ + sin2 φβ

d0 = dβ
γ

√
1− β2 cos2 φβ (28)

2.5.5 Local Time

FitzGerald relativity is normative in the matter of time. It does not make claims
about the physics of clocks; rather, it prescribes what clocks should do. One time
scale for all frames is fundamental to FitzGerald relativity.

We now consider the deprecated use of local time and how it relates to the
standard rest frame time of FitzGerald relativity. We must heed the requirement,
familiar in special relativity, that the origins of the two frames be coincident and
synchronized at time zero. The synchronizations are coordinate dependent, but the
length of the time unit is to be the same in all frames so the moving origin will
remain synchronized with the rest frame.

Referring again to figure 1, the reflection at B occurs at t0 = T1, but in the frame
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of P and Q local time of the reflection is taken to be tβ = T1+T2
2 .

tβ − t0 = T1 + T2

2 − T1

= T2 − T1

2

=

d0

(
−β cosφ0+

√
1−β2 sin2 φ0

)
c(1−β2)

−
d0

(
β cosφ0+

√
1−β2 sin2 φ0

)
c(1−β2)


2

= −d0β cosφ0

c(1− β2)
d0 cosφ0 = (x0 − βct0) and 1

1−β2 = γ2 so this becomes,

tβ − t0 = −βγ
2(x0 − βct0)

c

tβ = γ2
(
t0 −

βx0

c

)
(29)

At the origin of the moving frame with x0 = βct0 this reduces to tβ = t0, as required.
The reverse transformation is

t0 = tβ
γ2 + βx0

c

Substituting for x0,

t0 = tβ
γ2 +

β
(
xβ
γ2 + βct0

)
c

Re-solving for t0,
t0 = tβ + βxβ

c
(30)

These time transformations differ from the Lorentz time transformations by the
factor γ.

2.5.6 Angle Measure

By applying coordinate conversion to the trigonometric functions of φ, a stable7 angle
with one ray parallel to the x-axis, we learn the relation of rest and moving frame
measure of angles.

7Stable means the relative positions of the rays determining the angle do not change with time
or are taken at the same specified rest frame time.
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Tangent forward,
tanφβ = ∆yβ

∆xβ
= tanφ0

γ
(31)

and reverse,
tanφ0 = γ tanφβ (32)

Sine forward,
sinφβ = ∆yβ

∆dβ
= γ∆y0

γ2∆d0

√
1− β2 sin2 φ0

sinφβ = sinφ0

γ
√

1− β2 sin2 φ0
(33)

and reverse,
sinφ0 = y0

d0
= sinφβ√

1− β2 cos2 φβ

or written with sine only

sinφ0 = sinφβ√
1− β2 + β2 sin2 φβ

(34)

Cosine forward,

cosφβ = ∆xβ
∆dβ

= γ2∆x0

γ2∆d0

√
1− β2 sin2 φ0

cosφβ = cosφ0√
1− β2 sin2 φ0

or written with cosine only

cosφβ = cosφ0√
1− β2 + β2 cos2 φ0

(35)

and reverse,
cosφ0 = ∆x0

d0
= cosφβ
γ
√

1− β2 cos2 φβ
(36)

For angles ψ with both rays perpendicular to the x-axis the relationship is an
identity, ψβ = ψ0.
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Any angle with rays −→j and −→k co-planar with the x-axis equals the difference of
the two angles formed with the x-axis by rays −→j and −→k respectively.

For any other angle with rays −→j and −→k , conversion is possible either by trans-
forming points and recomputing angles or by employing spherical trigonometry with
the angle ψ between the two planes containing angles φ made by −→j and −→k , respec-
tively, with the x-axis.

Angles determined by non-simultaneous events, in contrast to stable angles deter-
mined by relatively fixed points, are especially frame dependent. Angles determined
in a different frame by the same non-simultaneous events may be found by trans-
formation of the determining events and applying the cosine law. In figure 1, for
example, the angle with the x-axis of the light path from emission to reflection is
6 CAB in the rest frame and 6 CDB in the proper frame of P and Q.

2.6 Generalized Coordinate Transformations
In the sections above, transformations were described for cases having the x-axis
parallel to ~β. This constraint is removable, but without preservation of orthogonality.
Axes will not transform to axes. Right angles are only preserved if one ray is parallel
to ~β or both rays lie in a plane normal to ~β.

Consider ~β with rectangular coordinates.

~β =
[
βx βy βz

]
(37)

Define.

γ = 1√
1− β2

(38)

γx = 1√
1− β2

x

(39)

γy = 1√
1− β2

y

(40)

γz = 1√
1− β2

z

(41)

We write FitzGerald transformations in matrix notation,

p0F = pβ (42)
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pβG = p0 (43)
where

p0 =
[
x0 y0 z0 t

]
(44)

pβ =
[
xβ yβ zβ t

]
(45)

F =



γγx 0 0 −γγxβxc

0 γγy 0 −γγyβyc

0 0 γγz −γγxβzc

0 0 0 1


(46)

G =



1
γγx

0 0 βxc

0 1
γγy

0 βyc

0 0 1
γγz

βzc

0 0 0 1


(47)

These can be modified to include the transformation to and from local time.8

p0F = pβ (48)

pβG = p0 (49)

p0 =
[
x0 y0 z0 t0

]
(50)

pβ =
[
xβ yβ zβ tβ

]
(51)

F =



γγx 0 0 −γγxβxc

0 γγy 0 −γγyβyc

0 0 γγz −γγxβzc

−γγx βxc −γγy βyc −γγz βzc 1


(52)

8Use of local times will be indicated with Sans Serif font in this work.
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G =



1
γγx

0 0 βxc

0 1
γγy

0 βyc

0 0 1
γγz

βzc

βx
c

βy
c

βz
c

1


(53)

Consider direction cosines of ~β in the local frame.

cosφx,β = βx
β

(54)

cosφy,β = βy
β

(55)

cosφz,β = βz
β

(56)

These cosines transform to rest frame measure

cosφx,0 = βxγx
βγ

(57)

cosφy,0 = βyγy
βγ

(58)

cosφz,0 = βzγz
βγ

(59)

3 A Method for Determining Absolute Velocity

3.1 Data Requirement
The determination of ~β, (beta,) relies on timings in each direction, out and back, of
light signals between high precision clocks. Let us designate the clock that originates
the “out” signal the base clock and the other, the reflector clock. The statistic of
interest is the ratio ρ, (rho,) of timing difference and total time,

ρ = Tout − Tback
Tout + Tback

(60)

This statistic is associated with the direction from base clock to reflector, so we also
write ~ρ.

A number of situations might provide useful data.
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• A satellite constellation, similar to the GPS system, with direct intercommu-
nication of time signals.

• A large space station or rotating cluster of tethered satellites or deep space
probes.

• A level terrestrial site with an evacuated light path not parallel to Earth’s
axis so that as Earth rotates the orientation would describe a cone without
disturbing relative synchronization or local frame path length.

In each of these situations movement of the base clock is not inertial, so we need
to know how the base clock moves over time with respect to the frame for which we
choose to evaluate ~β.

3.2 Analysis of the Problem
If the clocks are synchronized and absolute velocity of the base clock, ~βb (as a fraction
of light speed,) is parallel to ~ρ, then ρ = βb, but if the direction is perpendicular,
ρ = 0, and if anti-parallel, ρ = −βb. Generally,9

ρ = βb cosφ0√
1− β2

b sin2 φ0
= βb cosφb (61)

where φ is the angle between ~βb and ~ρ, with angle measure φb in the frame of the
base clock and φ0 in the rest frame. The subscript b is a reference to the frame of
the base clock.

If we can rely on there being no significant unknown difference in their rates, the
clocks need not be synchronized. An error that causes the reflector clock to lead the
base clock by a constant time error Tε, creates a correspondingly constant ρε,

ρraw = ρtrue + 2Tε
Tout + Tback

= ρtrue + ρε (62)

Data analysis will reveal the size of the synchronization error.
The clocks may be moving in a non-inertial way, making ~βb variable. It is crucial

to make clear which frame of reference we seek ~β for. After collecting the data, we
choose the frame of reference of the base clock for a specific data point. For other
data points we use the relationship between the base clock’s relative velocity ~v and
the absolute velocity c~βb.

~v0 = c(~βb − ~β) (63)
9See Part One, equations (10) (13) and (28).
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Initially, we have empirical (local to the chosen frame) values ~vβ, not ~v0, of the base
clock’s movements to use in our data analysis. These will yield an approximated ~β.
We use the appproximate ~β to transform ~vβ to rest frame values ~v0 with which to
calculate a more accurate ~β.

3.3 The Algorithm
The algorithm finds ~β from a few data points using tools
of analytic geometry. First, make ~ρraw a position vector.

~ρraw =
[
ρx ρy ρz

]
(64)

At each position ~ρraw, construct a normal plane,

ρx(x− ρx) + ρy(y − ρy) + ρz(z − ρz) = 0 (65)

Compensate for ~v0 ≈ ~vβ = [vx vy vz] with a slide of
the plane,

ρx

(
x− ρx + vx

c

)
+ρy

(
y − ρy + vx

c

)
+ρz

(
z − ρz + vx

c

)
= 0

(66)
Using two data points, find the intersection of two planes in a line. Next, find the
point intersection of that line with a third plane. Finally, test whether a fourth plane
contains that point. If the planes intersect in a point, the clocks are synchronized. If
not, a slide of all planes toward the origin by ρε minimizes distance of planes from a
single point. The position vector of the point is only an approximation of ~β, because
local frame values ~vβ have been used where rest frame values ~v0 were called for.

Use the approximate ~β, to transform the local frame velocities ~vβ to rest frame
measure.

~v0 = ~vβG (67)
Repeat the algorithm using values ~v0. The corrected calculation is expected to pro-
duce intersections at the single point ~β.

3.4 Supporting Evidence
A priori, there can be no expectation under Einstein’s special relativity[7] for varying
ρ if clocks orbit each other symmetrically in deep space far removed from other gravi-
tational influence. Even with fluctuations of clock rate due to gravitational potential
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or speed variation, effects are constrained to predictable values under special rela-
tivity; any deviation from these predicted values contitutes a falsification of special
relativity.

The GPS system provides telling evidence of the falsity of special relativity in
another way, too. The satellite clocks are all set before launch to run at the same
rate, a different rate than terrestrial clocks by about 38 microseconds per day, so that
once they have acheived orbit the combined effect of about 7 microseconds of special
relativistic time dilation due to velocity relative to earth and 45 microseconds of
gravitational general relativistic effect. The relative velocities of the satellites relative
to each other is of the same order as their velocity relative to the earth, some more,
some less, yet there is no time divergence of the satellite clocks. Therefore, time
dilation cannot be the effect of relative velocity of the clocks being compared but of
absolute velocity, relative, that is, to the frame of reference of isotropic light speed,
(elsewhere called the frame of the luminiferous ether.)

The competing notions about light speed isotropy have never been decisively
tested. Is it, as in special relativity, relative to every inertial frame, or, as in FitzGer-
ald relativity, relative to a unique rest frame?

The GPS system uses pseudoranges (timings of one way radio signals) instead of
true distances. These are statistically jiggered into best fit to a model with light speed
constant in the earth center frame of reference giving rise to pseudo-synchronizations
and pseudo-ephemerides for the GPS satellites that work optimally for geodesy. It’s
a messy but marvelously functional system, with systematic discrepancies also sug-
gesting that light speed is not isotropic relative to the earth center frame of reference.
(see figure 2)[6]
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4 Radar
Radar measures distance in the frame of the radar site, d = T

2c , by radio pulse timing
from pulse transmission to reception of the reflected pulse. By “frame of the radar
site” is meant the inertial frame relative to which the two events, transmission and
reception, occur at the same point separated only by time.

The distance at the time of pulse reflection is being measured. If rest frame time
of the reflection event is not known, it is customary to use the local time, tβ, half-way
between transmission and reception. If the target being tracked is moving relative
to the frame of the site, however, use of local time introduces error in the space-time
coordinates of the reflection event. For most earthbound applications the error may
be negligible. Rest frame distances and times may be more appropriate for larger
distances and space applications because time out and time back may be significantly
different, and movement of the target may be considerable.

If −→β for the radar site is known, then rest frame coordinates of the reflection event
can be calculated from the local frame coordinates, with local time, by application
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of reverse generalized FitzGerald transformations (with local time, see Section 2.6)

p0 = pβG (49)

Most radar does not yield precise angular data. The weakness of angle resolution
with radar can be overcome using a trilateration method of angle determination
using range data from multiple sites. More precise angular data is also achievable
with laser tracking.

Direction should be specified in terms of an irrotational inertial reference frame.
Even then, if the frame velocity and instantaneous velocity of the radar site are not
the same at the moment of sending or receiving, the angles will differ minutely due
to differences in aberration. The apparent receception angle is affected as described
in section 5 on aberration.

5 Stellar Aberration
Stellar aberration is angular shift of a star’s virtual position toward the direction of
the observer’s motion. Unlike the traditional treatment of aberration relative to the
solar inertial frame, we shall analyse aberration relative to the rest frame.

If the observer moves β unit distance as light from the star travels one unit
distance, we have the situation represented in figure three. Figure three shows that
the rest frame measure α0 of the aberration is

α0 = φ0 − φ′0 (68)

where φ0 is the rest frame angle measure between −→β and the direction to the origin
of the starlight, and φ′0 is the rest frame angle measure between −→β and the direction
a telescope must be directed to view the star. It is also apparent from figure 3 that

sin(α0) = β sin(φ′0) (69)

*

α0

⊥

1

φ′0

β sinφ′0

φ0

β
Stellar Aberration

Figure 3
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From known −→β and observed φ′β, we intend to find φ0
and the angle αβ defined by

αβ = φ0 − φ′β (70)

where φ′β is the local frame measure corresponding to φ′0.
We can gain our objective by calculating φ′0 using the

reverse FitzGerald transformation of φ′β, then using (69),
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find α0, then adding α0 to φ′0 yields φ0, and φ0 minus φ′β
equals αβ as defined.

Using the reverse FitzGerald transformation on sinφ′β

sinφ′0 =
sinφ′β√

1− β2 + β2 sin2 φ′β
(71)

Substituting for φ′0 in (69) we find α0

α0 = arcsin(β sinφ′0) = arcsin
β sinφ′β√

1− β2 + β2 sin2 φ′β
(72)

Adding α0 and φ′0

φ0 = α0 + φ′0 = arcsin
β sinφ′β√

1− β2 + β2 sin2 φ′β
+ arcsin

sinφ′β√
1− β2 + β2 sin2 φ′β

(73)

Finally, our objective,

αβ = φ0−φ′β = arcsin
β sinφ′β√

1− β2 + β2 sin2 φ′β
+arcsin

sinφ′β√
1− β2 + β2 sin2 φ′β

−φ′β (74)

Reminder: The equation for transforming φ is not to be used to transform α
directly.

The same aberration occurs for sources nearer than a star, the target of a radar
signal in particular.

References
[1] D. B. Wallace, “A fresh exploration of relativity,” (available at

http://physicsfixes.elementfx.com/Fresh%20Exploration.html)

[2] G. F. FitzGerald, The ether and the earth’s atmosphere. Science XIII, 328,
390, (1889).

[3] Albert Abraham Michelson and Edward Morley, On the rela-
tive motion of the earth and the luminiferous ether. Ameri-
can Journal of Science, 34 203, 333–345 (1887). (available at
https://en.wikisource.org/wiki/On_the_Relative_Motion_of_the_Earth
_and_the_Luminiferous_Ether)

24

https://en.wikisource.org/wiki/On_the_Relative_Motion_of_the_Earth_and_the_Luminiferous_Ether
https://en.wikisource.org/wiki/On_the_Relative_Motion_of_the_Earth_and_the_Luminiferous_Ether
https://en.wikisource.org/wiki/On_the_Relative_Motion_of_the_Earth_and_the_Luminiferous_Ether
https://en.wikisource.org/wiki/On_the_Relative_Motion_of_the_Earth_and_the_Luminiferous_Ether


[4] Joseph Larmor, On a dynamical theory of the electric and lu-
miniferous medium, part 3, relations with material media.”
Phil. Trans. Roy. Soc. 190, 205–300, (1897), (available at
https://en.wikisource.org/wiki/Dynamical_Theory_of_the_Electric_and
_Luminiferous_Medium_III)

[5] H. A. L. Lorentz, Simplified theory of electrical and optical phenomena in mov-
ing systems. Koninklijke Akademie van Wetenschappen te Amsterdam, Section
of Sciences, Proceedings 1, 427–442, (1899) section 4.

[6] Judah Levine, Time and frequency distribution using satellites. (2002), available
at http://tf.nist.gov/general/pdf/1602.pdf

[7] A. Einstein, On the electrodynamics of moving bodies. (1905), available at
https://www.fourmilab.ch/etexts/einstein/specrel/www/

25

https://en.wikisource.org/wiki/Dynamical_Theory_of_the_Electric_and_Luminiferous_Medium_III
https://en.wikisource.org/wiki/Dynamical_Theory_of_the_Electric_and_Luminiferous_Medium_III
http://tf.nist.gov/general/pdf/1602.pdf
https://www.fourmilab.ch/etexts/einstein/specrel/www/

	Introduction
	Scientific Theory
	Scientific Standards
	Scientific Revolution
	Introduction to FitzGerald Relativity

	FitzGerald Coordinate Transformations
	Events and Space-Time Coordinates
	Required Alignment of Coordinates
	Equation Summary
	Transformation Matrices
	Equation Derivations
	A Round Trip of Light 
	Moving Length
	Spatial Coordinate Conversion
	Reverse Length Conversion
	Local Time
	Angle Measure

	Generalized Coordinate Transformations

	A Method for Determining Absolute Velocity
	Data Requirement
	Analysis of the Problem
	The Algorithm
	Supporting Evidence

	Radar
	Stellar Aberration

